ECE 385
Fall 2024

FPGA FNAF
ONE NIGHT AT ECEB

Michael Griegel and Pratyay Gopal Reddy Rudravaram
Section XJ
Xuanbo Jin

Introduction

This report presents the development and implementation of One Night at ECEB, a
hardware-based fan game inspired by the popular game series Five Nights at Freddy's. Unlike
conventional game development approaches that rely on software-based rendering and
processing, our game is built entirely using combinational and sequential logic circuits in
hardware. The primary objective of this project was to demonstrate hardware design principles,
including state machines, logic synthesis, and timing analysis, while being interactive with the
user. The only portion of this project that was software based is the keyboard microblaze
communication, done with SPI protocol. This report details the design process, architecture, and
implementation of the game, including the logic circuits for player interactions, animatronic
behavior, and game progression. Challenges encountered during the design phase and their
corresponding solutions are also discussed, as well as a summary of testing and debugging
efforts to ensure a seamless gaming experience.

Written Description of Hardware Systems
Image to COE and ROM:

In order to include specific images as sprites in our project, we utilized Rishi’s ECE 385 Helper
Tools, found at the following link: https://github.com/Atrifex/ECE385-HelperTools. For each of
the sprites, we first downloaded them as PNG files and then ran them through the program. For
each sprite, we chose a specific color bit depth depending on the demands of the specific sprite.
In most cases, we used a color palette that was 3-4 bits wide in order to get a wide range of color.
Simpler sprites, such as the camera battery usage indicator, could be done in 2 bits because they
were monochrome or only utilized one or two distinct colors. Each sprite also had a different

resolution based on how big the image was. However, in order to stay consistent with our
downsized 160x120 display, each sprite dimension was also scaled down by a factor of 4.

Once these sprites were outputted from the program, we could then instantiate BRAM as a single
port ROM to hold each unique sprite. The coe files were used as memory initialization files so
that the memory would be properly initialized at the start of the game and would be ready to be
read from. The color palettes for each sprite were also stored as unique modules. Each specific
sprite had corresponding RGB logic signals and an index signal to properly pull the right 12-bit
color from memory. Each BRAM was instantiated using the negedge of the ~60 Hz vga clk.

https://github.com/Atrifex/ECE385-HelperTools

Sprite Transparency

:L: /6

Although some of our sprites, such as the background images, cover the full screen or have
defined straight edges, some of our other sprites consist of irregular shapes. One such example is
the Zuofu animatronic that appears in the door. Since the background of the door that he shows
up in needs to be seen, we had to implement his sprite using the concept of sprite transparency.
To do this, when creating the image, we used a pixel art editing tool to mask the background of
the animatronic sprite with a hot pink color. When sent through the image to COE program, this
color was detected as the 12-bit RGB xFOF. Then to actually account for the pink, we had to
implement extra code for the drawing of the sprite: when hot pink was detected at a drawX and
drawY coordinate, the sprite was not to be drawn. In this fashion, we could overlay sprites on top
of other sprites without risking cutting off any important parts of the background.

Color Drawing
OME NIGHT AT

ECE

URERMHA

Although we originally believed that we would need to have a frame buffer for our display, we
found that that was not the case. Our game does not rely heavily on fast screen movement or
display change, so any delay that might be caused by not having a frame buffer is not noticeable.
Instead, we simply used a long chain of conditionals to determine what colored pixel to draw at
each positive edge of the vga clock. In order to do this, we first made a long list of different logic
variables. As output to the color mapper itself, we had generic 4 bit red, green, and blue logic
values. However, we also created a separate set of red, green, and blue logic values for each
specific sprite/background. For example, we had an office red signal and a cams_blue signal
corresponding to the office background color and camera color respectively.

The one issue that we realized might occur with this implementation is that sprites might not
appear in the correct layers on the screen. However, to completely resolve this problem, we
carefully chose the ordering of our conditional statements. For example, our win screen and lose

screen should completely override any other sprites that are drawn on the screen. As a result,
they were the very bottom conditionals in our draw logic, meaning that no matter what came
before, they would override and the rgb colors would be set for the win_rgb or lose_rgb.

We also accounted for the lights in the color selecting part of our color mapper. Using a signal
“light_en” to determine when the lights were on, we simply added “1” to each of the rgb values
for a sprite when light en was logic high. As a result, since XFFF is white in our 12-bit RGB
color implementation, we could easily change the color of the whole screen without much extra
logic.

Display Scaling

Although our screen is 640x480 as defined by the VGA display output, we scaled our game
down to 160x120 pixels in order to make the game take up less space and fit our intended
aesthetic. To accomplish this, we simply right shifted the drawX and drawy signals by 2 bits
each, effectively dividing them by 4. Then, using these new smaller x and y logics, which we
called dx and dy, we could start implementing our ROM address calculations. Using row major
order, we found that the 15 bit ROM address could be calculated as (dx + dy * 160). Similar
calculations were also done for each of the other coordinate dependent sprites, such as the
cameras and fan. These were needed because these particular sprites were implemented as
multiple similar copies of themselves in order to allow for animation. As a result, we could
simply select the correct dx and dy values within the sprite to choose the correct copy depending
on what was happening in the game.

VGA HDMI IP and VGA controller

To implement the display as we did in lab 6, we used the same VGA to HDMI IP and VGA
controller sv module that we were previously given. For our project, we utilized both the vsync
and vga_clk signal outputs from the controller. Although the vga clk was suitable for accessing
the font ROMs in BRAM, major game logic, which needed to be updated on every frame,
required us to use the faster vsync. Then, to allow us to output using HDMI, the VGA-to-HDMI
conversion IP block came into play. This IP interfaces with the aforementioned controller using
the 4-bit red, green, and blue values that come from the color mapper. The IP also needs two
clock signals: a “pixel clock™ to define the time that each pixel is driven into the display, and a
second, faster clock (5x the pixel clock) to manage internal resources. In our case, the 640x480
VGA display requires a 25MHx pixel clock and a 125MHz 5X clock. Note the 5X clock is
higher frequency than the FPGA’s 100MHz clock: the clocking wizard IP can be used to generate
all required clock signals.

Battery Logic and display

T R TG

During gameplay, our battery is responsible for determining how much power we have left to
power the doors, lights, and camera. As a result, we created a 2-bit variable battery state that
changes value based on how many of the three power-sinks are in use at the same time. We also
created an 11-bit signal batt percent, that counts down from decimal 1584 at set increments
depending on the battery state. Decimal 1584 is the product of 99 and 16, representing the
amount of battery left (starting from 99%) bit shifted by 4. This bit shift was done to allow
calculations of battery drain to use integers instead of fixed or floating point values. However,
for display purposes, a separate logic signal is used to represent the actual percent from 99% to
0%.

The overall game time counter updates every frame on the positive edge of the vsync clock
signal. However, we didn’t want to update the battery state every frame because that would lead
to too much drain and the game would not be possible. As a result, we decided to update the
battery every time gamecount[4:0] == 5'b00000. This allowed us to update the battery every 32
frames instead of every 1 frame, and with our variable battery drain increments of 1, 3, 5, or 9
depending on battery state, we were able to make the game difficult but still beatable.

Animatronic and Jumpscare Implementation

Each of the animatronics in our game appears at a pseudo-random time based on the current
value of the overall game counter and a user-generated offset. In each appearance of an
animatronic, the player has a certain amount of time (1 s to 3.5 s) to close the door before they
automatically lose. In order to implement pseudo-randomness, the player sets a value onto the
five leftmost switches of the Urbana board before starting the game. Then, the switch values are
put into various logical equations in order to generate the different offsets that will be used.
Although it would have been nice to make the timers completely random, in order to prevent
possible collision of animatronic times, we instead used set base times with pseudo-random
offsets to ensure that only one animatronic could possibly appear at one given time. If the player
loses, the animatronic will turn into a jumpscare that flashes based off a separate counter time
before the losing background covers the screen.

Counter logic

Although the master game clock is responsible for most of the game logic and timing, we also
implemented several separate counters to allow for the timing of various other events in the
game. For example, the light flickering and jumpscare flashes were both implemented using a
counter to time each action. Unlike the more simple counters that we learned about and used in
prior labs, each of our counters had extra logic to ensure that it would start on the correct rising
or falling edge of a certain signal. For example, on each positive edge of vsync, we would set
condition_delayed <= condition so that we could start counting when condition !=
condition_delayed. In this fashion, our counter would only start on the clock cycle after the
condition signal changed values. Having separate counters allowed us to complete actions on
timings that were discrete from the master game clock. It allowed us to instead use certain game
logic to choose when to start an event instead of time values.

Animations

In order to make our game more lively, we created an idle animation for the fan that overlays on
the office background. This animation runs off a 4 bit counter that counts up and overflows. In
order to make it easier to make the animation, we stored multiple copies of the fan in the same
sprite in ROM. As a result, based on the counter, we can simply just change the calculations for
the correct ROM address to select between the right copy. The camera and door animations were
done in similar fashions, though the camera was more challenging to implement as it required us
to deal with transparent pixels once again. This is because the camera opens and closes on top of
the office background; the background should still be visible until the camera is fully open.

Written Description of Software Systems

The only software component that we had for this project was the SPI keyboard code, taken
directly from our code in lab 6. This code includes the following four modified functions:
Maxreg wr, Maxreg rd, Maxbytes wr, and Maxbytes rd. These functions use the predefined
XSpi_SetSlaveSelect() and Xpi_Transfer() Helper functions to write to the MAX3421 usb
controller, and in turn, receive inputs from our keyboard. The Maxreg wr function is used to
write 1 byte of data to a specified address while the Maxreg rd is used to read 1 byte of data
from the specified address. Similarly, Maxbytes wr is used to write multiple bytes to the address
for the larger registers such as R20 or R21 and Maxbytes rd is used to read from the
aforementioned registers if the register data is more than 1 data byte long. For all four of these
functions, we used a temporary write and read buffer to output and input data to the chip. The
only differences between the single byte functions and the multi byte functions was the size of
the read and write buffers.

The SPI protocol used is a communication protocol which operates on the principle of a Serial
BUS to communicate between 2 devices, the master and the slave. The Master controls the
transaction and is in charge of setting the internal synchronous clock. In total, there are 4
channels which are used in SPI: SCLK (clock), MISO (Master in Slave Out), MOSI (Master Out
Slave In) and SS (Slave select/enable). Each operation is sent in packets between the devices.
The first byte of every transaction is called the command byte, and it is sent by the master to the
slave. This indicates the register address that will be accessed and whether the operation is a read
or write. This command byte is then followed by data bytes which indicate what will actually
happen to the register that we are accessing.

The SPI protocol is also full duplex, meaning that both the master and the slave can
simultaneously communicate with each other. This means that the slave also sends data when the
master sends data. When the master is sending the command byte, the bits that the slave sends
back are called status bytes. In addition, the Os that the slave sends while receiving the master’s
data bytes are called dummy bytes. When the R/W bit in the command byte is set to the read
mode, the data bits arrive on the MISO instead of the MOSI and the MOSI sends dummy bits
instead. The final channel, SS or slave select, is used when we have more than 1 slave per master
so that we don't accidentally write to the wrong slave. In our case, our MicroBlaze was
communicating only with the Max chip.

Block Diagrams

O ied ofis

aasrll A1)

sl gn30]

pinal ek

i)

vga cantmiler

| | ——n

—r TS cLk R
fuyme M oLk r [demi_tends_cc g

) THE AT A MI0]

ekl

Fek o s ot g L) i tms_data ni2)

a el tocl,_dta pf20]

meaol |

aw 150 O
ae Oy dk ot
Y= Eo

mopo |

P e b i3 0 I hec qrangza)

Bi2[0) b iaf70)

eapo) L1 hecsegh 0]

e_ri 30 -
T

e
1 necseqara)

gpa s int ta_{00] O

a0 ped

ush i misa [

rese 0 O

< 100MHE D—‘
[

e L0 - u;:”“ LT '—D gpo_ush st ¥ia
= : e Db [et et O
opgeiny sl Py D hstms
b s L{ wsh spi sk
‘mb_hat |—| » b iz
Figure 1: Overall system block design including VGA and microblaze
simer ush_si Y | D s
- e
gpio_ush, int
""”’“_ & +|lk D> apio_wbnt
S ’
Tt s0o.n D> aoo wbst
| — hax
o
1t MicroBlaze ® —
- s ek wiz 1.100M i gpio_sb keyeode 0
g — HH = [l gric b keycode |
I im
Ee
‘ dom lodd paripharal_aanil L] v ricxablam 0 24 inae
= T
S narngn | —
—
s HI|

s spi o [

I—D st i (20

Figure 2: Overall microcontroller setup design for microblaze

Figure 3: The whole game logic for one night at ECEB in one screenshot

Stari
Screen

Spacebar

Controls
Screen

Spacebar

[D] Cffice (Dark) L]
Door Light
Closed Enabled

[C] open [X] close
Cams

[Open 1 sec or more]
Lab 7.2 Jumpscare
[3:00 am onwards]

Based on seed switches[15:11]

[Cannot see wio light in Hard mode]
7 Jumpscares door closed Survive till 7 am
4 gates, 3 zuofu

door not closed

Game over Game over

[Lose] [Win]

Figure 4: The game logic as a decision tree/state diagram

Module Descriptions

Module: fhaf top.sv

Inputs: Clk, reset rtl 0, [15:0] sw_1i, [0:0] gpio_usb int tri i, usb_spi miso, uart rtl 0 rxd
Outputs: [15:0] led o, gpio _usb _rst tri_o, usb_spi_mosi, usb_spi sclk, usb _spi_ss,
vart rtl 0 txd, hdmi tmds clk n, hdmi_tmds clk p, [2:0]hdmi tmds data n,
[2:0]hdmi_tmds_data p, [7:0] hex _segA, [3:0] hex gridA, [7:0] hex segB, [3:0] hex gridB
Description: This module contains instantiations of the hex drivers, microblaze, clocking wizard,
vga controller, vga to_hdmi converter, and color mapper.

Purpose: Top level system verilog file of the project. It is used to turn each of our individual
modules into a functioning system and project.

Module: VGA_controller.sv

Inputs: pixel clk, reset

Outputs: hs, vs, active_nblank, sync, [9:0] drawX, [9:0] drawY

Description: This module implements VGA logic across an 800 x 640 sized canvas. It creates a
horizontal and vertical counter that count to the width and height of the screen respectively so
that the drawing cursor can seamlessly move between lines. It also creates a buffer on the right
and bottom edges of the screen to facilitate this movement between lines. Finally, it creates
horizontal and vertical sync pulses.

Purpose: This module sets up the logic that moves our drawX and drawY positions across the
screen. It also is responsible for creating a horizontal sync pulse and a vertical sync pulse, both
of which act outside the 640x480 actual screen resolution.

Module: Color Mapper.sv

Inputs: vga clk, vde, vsync, [15:0] switch, [9:0] DrawX, [9:0] Drawy, [31:0] keycode
Outputs: [3:0] red, [3:0] green, [3:0] blue, [15:0] led

Description: This file contains literally all of the game logic and overall implementation of the
project. It initializes all of the ROMs, palettes, and contains all logic for jumpscares, game
timing, and battery usage. It also handles all the color selection based on different in-game
signals. It uses combinational logic to set the RGB colors for each specific pixel based on the
DrawX and DrawY positions of the cursor.

Purpose: This module is what makes our game run and also makes our game colorful. It uses the
drawX and drawY positions from the VGA controller to draw each pixel onto the screen during
each frame. It also is what actually makes our game playable and uses lots of internal signals to
coordinate the RGB outputs.

Module: palettes.sv

Inputs: [index bit depth - 1: 0] index,

Outputs: [3:0] red, [3:0] green, [3:0] blue

Description: This module contains color palettes corresponding to each of the sprites that are
loaded into memory. Each color palette has a different bit depth depending on the individual
sprite and its color needs. Each individual palette is its own unique module within this overall
palettes.sv file, but for simplicity, they will all be lumped together here as they all serve the same
purpose.

Purpose: This palette file is what allows us to color in the different pixels on the screen according
to the sprites. It gives us 12-bit color codes corresponding to different colors present on the sprite
and uses the index input to determine which color to select. The amount of bits in the index input
for a specific module depends on how many colors the palette contains.

Module: COE Files

Inputs: N/A

Outputs: N/A

Description: Contains hexadecimal values relating to the data that should be loaded into memory.
Purpose: Each of our sprites was a PNG file that we turned into a COE file using Rishi’s ECE
385 tool. Each of these COE files contains data about a sprite that is loaded into an instantiation
of BRAM.

Module: Clocking Wizard

Inputs: reset, clk in

Outputs: clk out, locked

Description: Takes in an input clock signal based on the FPGA board clock cycle and outputs
clock signals of other desired frequencies.

Purpose: Used in the MicroBlaze USB block design to provide a 100 MHz clock to all the
various MicroBlaze components. Also used to output a 25 MHz pixel clock and 125 MHz 5x
clock that are inputted into the VGA to HDMI Encoder module.

Module: HDMI/DVI Encoder (vga_to_hdmi)

Inputs: pix_clk, pix_clkx5, pix_clk locked, rst, [3:0] red, [3:0] green, [3:0] blue, hsync, vsync,
vde

Outputs: TMDS CLK P, TMDS CLK N, [2:0] TMDS DATA P, [2:0] TMDS DATA N
Description: This IP block allows a VGA controller to drive an HDMI monitor. Any
VGA-compatible controller that produces HS, VS, VDE and the R, G, and B color signals (up to
8 bits each) can be used.

Purpose: This IP block is used to convert our internal VGA signal into an HDMI signal
compatible with the output of the urbana board so that we can view our program on an external
monitor.

Module: MicroBlaze

Inputs: INTERRUPT, DEBUG, Clk, Reset

Outputs: DLMB, ILMB, M_AXI DP

Description: An IP based 32-bit CPU that can be programmed using a high level programming
language such as C. In the microcontroller preset, it provides us an area optimized
microcontroller that can be used to perform low-performance tasks.

Purpose: The MicroBlaze is the CPU that provides the basis for all the functions that we
implement. It is used as the master for all the AXI and other MicroBlaze components.

Module: AXI Uartlite

Inputs: S_Axi, s_axi_aclk, s_axi_aresetn

Outputs: UART, interrupt

Description: An AXI component that allows us to interface with outside peripherals. With a set
baud rate (in our case, 115200), our UART communicates with the Vitis serial terminal through
the asynchronous UART protocol.

Purpose: Provides our software with printf support that can be used for debugging through the
Vitis serial terminal.

Module: MicroBlaze Debug Module (MDM)

Inputs: N/A

Outputs: MBDEBUG, Debug SYS Rst

Description: Allows a configurable debug functionality for the MicroBlaze and Axi system.
Allows the use of a UART to assist in debugging the block design.

Purpose: Used to give us the ability to debug our hardware block designs and Microblaze
systems if needed.

Module: Axi Interconnect

Inputs: S00_Axi, ACLK, ARESETN, S00_ACLK, S00 ARESETN, M00_ACLK,

MO0 ARESETN, M01_ACLK, M01_ARESETN, M02 ACLK, M02 ARESETN, MO3 ACLK,
MO3 ARESETN, M04 ACLK, M04 ARESETN, M05 ACLK, M05 ARESETN, M06 ACLK,
MO06_ARESTN

Outputs: M00_AXI, MO1_AXI, M02_AXI, M03_AXI, M04_AXI, M05_AXI, M06_AXI
Description: The Axi Interconnect provides a link between all of the AXI memory-mapped
master devices and the AXI memory-mapped slave devices. It provides the 32 bit Axi bus that is
used for all communication between AXI devices.

Purpose: This is the main controller for all of the other AXI peripherals and IP blocks in our
block design as it generates all of the control signals for them after taking inputs from the
microblaze.

Module: Processor System Reset (rst_clk wiz)

Inputs: slowest _sync _clk, ext reset in, aux_reset in, mb_debug_sys rst, dem_locked

Outputs: mb_reset, bus_struct _reset, peripheral reset, interconnect aresetn, peripheral aresetn
Description: A module that allows the user to synchronize an asynchronous external reset input
with the internal clock signal. This module also provides an output reset signal that is used as the
reset signal for all peripherals in the block design such as the GPIOs.

Purpose: This module allows us to synchronize our FPGA reset button to the internal clock of the
block design. It also allows us to use our reset button as an overall reset for each of the
components in the block design.

Module: Axi Timer

Inputs: S_Axi, capturetrig0, capturetrigl, freeze, s axi aclk, s axi_aresetn

Outputs: generateout0, generateoutl, pwm0, interrupt

Description: A counter (32 bits) that generates an interrupt signal as its output. This module is
capable of capturing events that trigger the timer.

Purpose: This module is largely unconnected in our project, but its output interrupt signal is one
of the four interrupt signals that are concatenated together to form the overall interrupt signal.

Module: MicroBlaze Local Memory

Inputs: DLMB, ILMB, LMB _clk, SYS-RST

Outputs: N/A

Description: This is the local memory block for the MicroBlaze which provides 128Kb of
storage space.

Purpose: This is the microblaze’s general purpose of memory which is used to store almost
everything that doesn't have its own registers. It can be extended up to 128Kb and acts as the
RAM for the microblaze.

Module: Axi Interrupt Controller

Inputs: s_axi, s_axi_clk, s _axi_aresetn, processor_clk, processor_rst

Outputs: interrupt

Description: This module takes in all of the reset signals, concatenated interrupt signal, and clock
signals to generate an interrupt when requested. This interrupt output then goes into the
MicroBlaze.

Purpose: The interrupt controller is used to generate an interrupt signal for the MicroBlaze when
it is required by the GP1O, UART, SPI, or Axi timer.

Module: AXI Quad SPI

Inputs: AXI_LITE, ext spi_clk, s axi clk, s axi aresetn, USB_SPI MISO

Outputs: USB_SPI MOSI, USB_SPI sclk, USB_SPI_SS [0:0]

Description: This module takes in the Axi clock and the output from the AXI interconnect to
communicate with the MAX2431E USB controller chip.

Purpose: The Quad Spi is the main communication bus between the USB controller (slave) and
the microblaze on the urbana board (master). It is what allows us to communicate the USB
keyboard inputs to the MicroBlaze and other SystemVerilog modules.

Module: AXI GPIO

Inputs: S_Axi, s_axi_aclk, s_axi_aresetn

Outputs: GPIO

Description: A general purpose I/O block that allows the Axi bus to communicate with outside
peripherals such as buttons, switches, and LEDs on the FPGA board.

Purpose: This microblaze component allows us to communicate between the MicroBlaze and the
keyboard. It allows us to take in keycodes from the keyboard in order to drive our game logic.

Module: Concat

Inputs: In0, Inl, In2, In3

Outputs: [3:0] dout

Description: Takes in interrupt signals from the Axi quad SPI, UART, GPIO, and Axi timer and
outputs a concatenated 4 bit wide signal.

Purpose: Since we have 4 block components that each provide their own interrupt output signal,
the concat module allows us to concatenate each of the four signals into one signal output that
can then be fed into the Axi interrupt controller.

Simulation Waveform

By the demo, we had all of the signals working and we did not use a testbench as we physically
exported hardware as the testbench cannot tell us the sprites being drawn to the screen. The game
logic was pretty well mapped out so we did not use a testbench. The main game logic is handled
by the game loop and all the following signals are used to control all of the game sprites:

™ jumpani[1:0]

Design Resources and Statistics

Synthesis:
LUT 1,272
DSP 8
Memory (BRAM) 0
Flip-Flop 159
Latches 0

Implementation:
WNS (ns) 1.738
LUT 3,928
DSP 11
Memory (BRAM) 60
Flip-Flop 2,932
Latches 0
Frequency (Mhz) 121.036069
Static Power (W) 0.078
Dynamic Power (W) 0.399
Total Power (W) 0.477

As can be seen in these tables, we utilized a majority of the available BRAM on the Urbana
board to store all of our sprites in ROM. Our WNS is 1.738, which is not great, but good enough
to run our program without any issues. We used a lot of LUTs as well, likely due to the immense
amount of game logic that we made on hardware, as shown in Figure 3.

Conclusion

By the demo, our game was fully functional and working with all the required features as listed
on the project proposal. However, we did have a slew of bugs during the design and development
process that inhibited our progress. Firstly, one issue that we encountered was with the animation
for camera opening and closing. Although the camera opened completely correctly, the closing
animation did not work: instead, it would simply play the opening animation again. To fix this,
we had to reverse the ordering of the signals in the animation to ensure that it played in reverse
order.

We also had several other notable visual bugs that we had to fix. First, the way we implemented
transparency for sprites caused some issues. As discussed previously, we used neon pink for any
transparent pixels due to the fact that that color does not naturally appear in our project.
However, although we correctly implemented our color palettes for those sprites, they were
drawing incorrectly with extraneous coloring. We realized that we had simply mismatched the
signals for different sprites, causing sprites to use the incorrect transparency checks that
corresponded to other sprites. We also experienced some minor issues with our color palettes.
When converting our sprite images to coe through the given tool, the tool incorrectly identified
the same colors as different 12-bit RGB codes for different sprites. As a result, we had to
tediously check each color code and make sure that they actually matched when intended. The
final visual bug was also quite simple: our fan animation was clipping off part of the
background. To fix this, we simply set a bound on the drawY and drawX components to ensure
that the fan was not drawing outside of its circular radius.

The other bugs we had were all related to the hardware game logic. Although our jumpscares
were properly occurring in most cases, we found that we could get jumpscared multiple times,
even after we had already lost. In order to fix this, we had to provide default values for our
jumpscare and game-lose signals to ensure that they were not floating at any point. This allowed
us to purposefully set which screen would be drawn to the display at the correct moment. The
final main bug we had was in our timing. To synchronize the different components of our game
(clock, jumpscares, etc.) we used a counter that counted up by 60 each second. We had some
minor arithmetic errors that caused our game to bug and had to match them and ensure they were
correct to properly implement the animatronics and game loss/win.

The main extension that we could make from our current project is the inclusion of audio for
door closing, static, and jumpscare sound effects. These audio effects could be created using
BRAM to store wav files converted into coe files. We were planning on using 8 bit unsigned
audio and a custom built PWM module to do this, however we ran into issues with unintended
high frequency harmonics disrupting the sound. Although linear interpolation and upsampling
were given as solutions to this problem, our current knowledge of sampling was not enough to
understand these methods. This could definitely be something to revisit in the future if we
wanted to make our game even better.

