
ECE 411 Final Project Report: mp_OoO
Team OoOps

Abhi Alavilli​
Department of Electrical and Computer

Engineering​
University of Illinois,
Urbana-Champaign​
Urbana, IL, USA​

abhia3@illinois.edu

Alexander Gallagher​
Department of Electrical and Computer

Engineering​
University of Illinois,
Urbana-Champaign​
Urbana, IL, USA​

alexg5@illinois.edu

Pratyay Gopal Reddy Rudravaram​
Department of Electrical and Computer

Engineering​
University of Illinois,
Urbana-Champaign​
Urbana, IL, USA​

pratyay2@illinois.edu

Introduction: This report details our group’s
implementation of an out-of-order RISC-V 32 IM processor
“OoOps” in RTL and our findings while optimizing its
performance. Being able to execute instructions out of
program order, while maintaining true dependencies for
correct execution, allows the core to take advantage of
instruction-level parallelism (ILP), which is an inherent
exploitable property of most computer programs.

This paper details the high-level (and some granular)
design details for our core, as well as observations and tuning
we conducted from benchmarking it across various programs.

I.​ PROJECT OVERVIEW (ADVANCED FEATURES)
For this project, due to the soft 300,000 µm^2 area limit

we decided to implement a dual-issue core to increase
throughput without hitting diminishing returns. We
suspected that the increased pipeline throughput would
provide an edge in the competition, as well as playing nicely
with all of the different memory optimizations we had
planned. Alex had experience with caches from a previous
class, and was able to get a lot of memory-related work
done before we even had a working core. As for the division
of work, we created an initial division of labor - Pratyay on
the execute units, Abhi on the renaming structures and Alex
on the issue queue, caches, and dual-port FIFO, which was
an essential part of our 2-way superscalar design. Later on,
we ended up all working on several modules (and adding
several more) during integration, and many were rewritten
several times.

II.​ DESIGN DESCRIPTION

A.​ Overview
The OoOps processor is a two way superscalar,

speculative, out-of-order core following the RISC-V 32 bit
integer ISA with the Multiplication extension. At a high
level, our core was split into six pipeline stages:

-​ Fetch
-​ Decode
-​ Rename
-​ Dispatch
-​ Execute
-​ WriteBack/Commit

Coming from a project where we each wrote a one-way
in-order pipelined core, we found it less complicated to
build the core keeping everything in both ways in order until
dispatch, where instructions sit in reservation stations until
their operands are ready. Since we used an explicit renaming
scheme, we needed ERR-specific structures (RAT, RRF,
Freelist) as well as a reorder buffer to ensure commit order
was maintained correctly. The execute units were organized

as ALUs, an AGU, a MUL/DIV unit, and the Load/Store
queue for memory operations. Each execute unit has a bus
line (Common Data Bus) going into the register file to write
results . This design allowed us to eliminate the overhead of
bus arbitration by simply checking each line for published
results in the register file. It also made it easier to add more
functional units (our final design incorporated two ALUs)
later on. The reorder buffer was built to commit two
instructions at a time to RVFI, which was verified with a
Spike golden model.

B.​ Milestones
(i) Checkpoint 1

​ For the first checkpoint, we began laying the
foundation of our core - we built a simple fetch unit, a
dual-ported FIFO to make it easy to move to superscalar,
and wrote the line buffer for our cache. We also made an
arbiter (later rewritten) for DRAM, since the memory model
we were provided was single-ported. This set us up for the
rest of the project with a basic instruction queue.

Fig. 1.​ Initial high-level draft of OoOps core.

1

Fig. 2.​ Rename/Execute stage diagram.

We drew up this simpler diagram of what the core would
look like, and this was used as a high-level reference for
integration. As seen in the first diagram, we at first
considered the F (float) extension to the ISA before we
learned that it would not be worth additional advanced
features points.

(ii) Checkpoint 2

​ In this checkpoint, we aimed to process ALU
instructions with out-of-order capability. We were not able
to meet the deadline for the checkpoint, but we made
progress on the rename structures while Alex wrote the
prefetchers, cache, and the split load-store queue. Pratyay
integrated Synopsys IPs for the MUL/DIV unit into the
core. At this point, we began integrating components and
wanted the way modules worked to be clear to everyone,
regardless of who wrote them. A major source of error and
confusion was the rename stage, and the following diagram
helped to resolve that.

Fig. 3.​ Checkpoint 2 Rename stage in detail.

(iii) Checkpoint 3

​ During checkpoint 3, we had a lot of trouble with
integration - we found several components we had written
that were not written to support dual issue or were not
verified with randomized and targeted test vectors. We were
able to finally put everything together and get a core that
would compile in simulation, but would cause a Spike
mismatch on the first commit. After spending a few days
debugging and getting to a few hundred instructions, our
team decided to take a step back and rewrite some of our
ERR modules. We verified these independently before we
began integrating again, creating fewer hiccups and bugs.

C.​ Advanced Design Features
The two weeks remaining were what we had to work

with to get our processor to work. Although we were behind
on previous checkpoints, something that worked towards
our advantage was that most of our advanced features had
been implemented while we developed the core. As a result,
getting it to work with these components gave us a very
performant processor from the start. During this time, we
rewrote the rename modules, created a hard ordering down
to the dispatch stage to simplify logic, incorporated GShare
branch prediction, greatly improving on the saturating
counter we had been using prior, parameterizable functional
units, and an interesting way to make the core one-way by
feeding no-ops into one port of the instruction queue. Below
each optimization is discussed individually.

(i) Cache features

​ ​ Both the instruction and data caches were
implemented with three ports - ​ one for the prefetcher,
and two ports for the two ways of the superscalar core. By
allowing two ports to simultaneously access the cache, we
could take advantage of the pipelined cache system,
allowing for maximizing throughput of the SRAMs without
increasing the number of SRAM ports to support it.
Additionally, we utilized a 64 Byte cacheline size, and
through the parametrization of the cache, we doubled the
total size of the iCache relative to the dCache for
performance reasons (8KB vs 4KB). Additionally, we
implemented a linebuffer for same-cycle responses and to
support up to 2 memory operations per cycle.

​ ​ To test the caches, we used Coremark to see how
​ different set and way counts performed. We found that
​ moving from a 4-way to 8-way cache benefited both the
​ instruction and data cache, giving us a 4% and 1.5%
​ improvement on runtime respectively. For this reason,
we chose to double the size of the iCache rather than the
dCache.

​ (ii) Cache prefetchers

​ ​ Instruction Cache: We used a simple stride (which
​ ended up being used as a next-line) prefetcher for the
​ instruction cache, and triggered it off of a read or write
​ being halfway through the cache line in the line buffer.
​ We measured a 0.4% improvement in program delay for
​ CoreMark on the instruction cache, and no measurable
​ improvement when tested on the data cache. We attribute

2

this small uplift primarily to the already well-utilized
memory systems implemented through the current cache
implementation and the line buffer.

​ ​ Data Cache: Here, we used a DMP (Dynamic
Memory-dependent Prefetcher) to look for “pointers”: each
line ​ fetched from DRAM into the data cache is scanned
for ​pointers to prefetch. This is accomplished by checking if
​ any of the words are within a certain window of the PC,
​ which is fed into the prefetcher from the core. This was
​ also only using one of the PCs in the superscalar core,
​ however. Unfortunately, with our implementation, we
​ were unable to get a measurable performance benefit,
likely due to the lack of pointer fetching in the target
programs.

​ (iii) Superscalar

​ ​ From the start, we designed our core to be
superscalar. Though this would mean we were blowing up
our area usage, we ended up being just below the 300k μm2
maximum, and reached about 291k. We did not consider
having more than two ways due to both design
complications and the penalty for exceeding the area
limitation.

​ As for testing, we never tried synthesizing the core as
one-way, and hence were unable to extract a baseline area
metric to compare it to. This is because we tested the core as
one-way simply by sending no-ops into the second way.

​ On CoreMark-IM, (a math heavy program) we saw an
IPC of 0.557850 for a 1 way, 2 ALU core and IPC of 0.4680
for a 2 way, 1 ALU core. This showed us that the benefit of
going superscalar may not have been as much as we had
hoped for, though we did see more notable performance
improvements on benchmarks like aes_sha, which have
simpler control flow and higher ILP.

​ (iv) Load-Store Queue

The load store queue was one of the more advanced
modules in the processor, and we chose to add this since we
knew memory operations would be a likely bottleneck on
the core. This also played well with the cache optimizations,
which meant we had a fast memory system to support the
core.

Our load-store queue incorporates out-of-order loads with
respect to stores. First, prior to a load or store entering the
queue, it identifies dependencies existing inside of the
current store queue to forward necessary data. For any load
data that only partially exists inside of the store queue, the
load identifies the current index of the store in the FIFO to
ensure that that store completes prior to the load.
Additionally, the split LSQ forwards stores that have been
committed but have not been pushed to the cache.
Compared to our simple, single-port LSQ with in-order
execution, we obtained a 5.7% increase in performance in
memory-heavy benchmarks (AES_SHAH) but slight
performance regressions in other benchmarks (Coremark)
due to the increased latency of testing memory
dependencies prior to inserting loads into the FIFO.

​ (v) GShare (Branch prediction)

Our branch prediction was done in the decode stage, and we
used a Global History register and a Pattern History table
with the XOR hash, as is commonly used, to generate a
prediction. We had an 8-entry PHT to reduce area usage,
and we found that this gave us a 91.6% prediction accuracy
in the compression benchmark. Compared to the saturating
counter (two-bit) predictor, this was a 29% accuracy
improvement. It should also be noted that the tables were
implemented using standard flip-flops instead of SRAM
which would have saved on area, but our implementation
required multi-ported PHT for our dual-commit processor,
and used combinational reads to perform branch prediction
in Decode. For this reason, we used a flip flop array.

III.​ ADDITIONAL OBSERVATIONS
​ As we noted for several of the advanced features, our
core benefited from memory optimizations throughout
testing, and proved extremely performant on memory-bound
programs. The superscalar aspect of the core was not as
useful in general, but this may also have been bottlenecked
by ALUs. As soon as we added the second ALU our IPC on
Coremark increased by 19%, a significant improvement.
Our core also suffered from high power usage across
benchmarks, which we later realized was due to not clock
gating our IPs, including the Cache SRAMs and the
MULDIV IP.

IV.​ CONTRIBUTIONS

Feature
Module Contributions

Alex Abhi Pratyay
Fetch
Queue

✔ ✔

Cache ✔

Prefetchers ✔

Line Buffer ✔ ✔

Decode ✔ ✔

Rename ✔

Dispatch ✔

DRAM
Mux ✔

LSQ ✔

Issue
Queues ✔

ROB ✔ ✔

PRF ✔ ✔

RRF ✔ ✔

Execute
FUs ✔

MULDIV
IP ✔

Rename ✔ ✔ ✔

RAT ✔ ✔

Freelist ✔ ✔

3

Feature
Module Contributions

Alex Abhi Pratyay
Branch
Predictors ✔

a.​

V.​ CONCLUSION
Overall, we successfully accomplished our goal of

building a high-performance, superscalar RISC-V32IM core
and performed well above the baseline core across
benchmarks. Given more time, we would be able to improve
on the power usage, functional unit/superscalar
configurations, and perhaps timing. For our autograder runs,
we hit a maximum frequency of 526 MHz, which was fair
when compared to other superscalar cores. Our
best-performing benchmark was the memory-bound
compression, and worst-performing was, like most groups,
CNN. Final benchmark results are shown below.

Fig. 4.​ IPC across provided and hidden benchmarks.

Fig. 5.​ Delay, microseconds, across benchmarks.

Fig. 6.​ Power, mW, across benchmarks.

ACKNOWLEDGMENTS
We would like to acknowledge our mentor TA, Ethan

Greenwald - meetings with him helped guide us through
choosing which features to integrate, as well as lots of tips
for specific implementation details that we found it hard to
think through on our own. Additionally, this project was
only possible through the support of our instructors,
Professor Dong Kai Wang, Professor Rakesh Kumar and the
rest of course staff that helped us throughout the semester.
Development was supported using university provided
Synopsys EDA tool licenses for simulation, synthesis and
IPs, and all our work was done on Grainger Engineering
EWS machines.

4

	I.​PROJECT OVERVIEW (ADVANCED FEATURES)
	II.​DESIGN DESCRIPTION
	A.​Overview
	B.​Milestones
	C.​Advanced Design Features

	III.​ADDITIONAL OBSERVATIONS
	IV.​CONTRIBUTIONS
	V.​CONCLUSION
	
	ACKNOWLEDGMENTS

