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Introduction: This report details our group’s 
implementation of an out-of-order RISC-V 32 IM processor 
“OoOps” in RTL and our findings while optimizing its 
performance. Being able to execute instructions out of 
program order, while maintaining true dependencies for 
correct execution, allows the core to take advantage of 
instruction-level parallelism (ILP), which is an inherent 
exploitable property of most computer programs. 

This paper details the high-level (and some granular) 
design details for our core, as well as observations and tuning 
we conducted from benchmarking it across various programs. 

I.​ PROJECT OVERVIEW (ADVANCED FEATURES) 
For this project, due to the soft 300,000 µm^2 area limit 

we decided to implement a dual-issue core to increase 
throughput without hitting diminishing returns. We 
suspected that the increased pipeline throughput would 
provide an edge in the competition, as well as playing nicely 
with all of the different memory optimizations we had 
planned. Alex had experience with caches from a previous 
class, and was able to get a lot of memory-related work 
done before we even had a working core. As for the division 
of work, we created an initial division of labor - Pratyay on 
the execute units, Abhi on the renaming structures and Alex 
on the issue queue, caches, and dual-port FIFO, which was 
an essential part of our 2-way superscalar design. Later on, 
we ended up all working on several modules (and adding 
several more) during integration, and many were rewritten 
several times. 

II.​ DESIGN DESCRIPTION 

A.​ Overview 
The OoOps processor is a two way superscalar, 

speculative, out-of-order core following the RISC-V 32 bit 
integer ISA with the Multiplication extension. At a high 
level, our core was split into six  pipeline stages: 

-​ Fetch 
-​ Decode 
-​ Rename 
-​ Dispatch 
-​ Execute 
-​ WriteBack/Commit  

Coming from a project where we each wrote a one-way 
in-order pipelined core, we found it less complicated to 
build the core keeping everything in both ways in order until 
dispatch, where instructions sit in reservation stations until 
their operands are ready. Since we used an explicit renaming 
scheme, we needed ERR-specific structures (RAT, RRF, 
Freelist) as well as a reorder buffer to ensure commit order 
was maintained correctly. The execute units were organized 

as ALUs, an AGU, a MUL/DIV unit, and the Load/Store 
queue for memory operations. Each execute unit has a bus 
line (Common Data Bus) going into the register file to write 
results . This design allowed us to eliminate the overhead of 
bus arbitration by simply checking each line for published 
results in the register file. It also made it easier to add more 
functional units (our final design incorporated two ALUs) 
later on. The reorder buffer was built to commit two 
instructions at a time to RVFI, which was verified with a 
Spike golden model.  

B.​ Milestones 
(i) Checkpoint 1 

​ For the first checkpoint, we began laying the 
foundation of our core - we built a simple fetch unit, a 
dual-ported FIFO to make it easy to move to superscalar, 
and wrote the line buffer for our cache. We also made an 
arbiter (later rewritten) for DRAM, since the memory model 
we were provided was single-ported. This set us up  for the 
rest of the project with a basic instruction queue. 

 
Fig. 1.​ Initial high-level draft of OoOps core. 
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Fig. 2.​ Rename/Execute stage diagram. 

We drew up this simpler diagram of what the core would 
look like, and this was used as a high-level reference for 
integration. As seen in the first diagram, we at first 
considered the F (float) extension to the ISA before we 
learned that it would not be worth additional advanced 
features points. 

(ii) Checkpoint 2 

​ In this checkpoint, we aimed to process ALU 
instructions with out-of-order capability. We were not able 
to meet the deadline for the checkpoint, but we made 
progress on the rename structures while Alex wrote the 
prefetchers, cache, and the split load-store queue. Pratyay 
integrated Synopsys IPs for the MUL/DIV unit into the 
core. At this point, we began integrating components and 
wanted the way modules worked to be clear to everyone, 
regardless of who wrote them. A major source of error and 
confusion was the rename stage, and the following diagram 
helped to resolve that. 

 
Fig. 3.​ Checkpoint 2 Rename stage in detail. 

(iii) Checkpoint 3 

​ During checkpoint 3, we had a lot of trouble with 
integration - we found several components we had written 
that were not written to support dual issue or were not 
verified with randomized and targeted test vectors. We were 
able to finally put everything together and get a core that 
would compile in simulation, but would cause a Spike 
mismatch on the first commit. After spending a few days 
debugging and getting to a few hundred instructions, our 
team decided to take a step back and rewrite some of our 
ERR modules. We verified these independently before we 
began integrating again, creating fewer hiccups and bugs.  

 

C.​ Advanced Design Features 
The two weeks remaining were what we had to work 

with to get our processor to work. Although we were behind 
on previous checkpoints, something that worked towards 
our advantage was that most of our advanced features had 
been implemented while we developed the core. As a result, 
getting it to work with these components gave us a very 
performant processor from the start. During this time, we 
rewrote the rename modules, created a hard ordering down 
to the dispatch stage to simplify logic,  incorporated GShare 
branch prediction, greatly improving on the saturating 
counter we had been using prior, parameterizable functional 
units, and an interesting way to make the core one-way by 
feeding no-ops into one port of the instruction queue. Below 
each optimization is discussed individually. 

 

(i) Cache features 

​ ​ Both the instruction and data caches were 
implemented with three ports - ​ one for the prefetcher, 
and two ports for the two ways of the superscalar core. By 
allowing two ports to simultaneously access the cache, we 
could take advantage of the pipelined cache system, 
allowing for maximizing throughput of the SRAMs without 
increasing the number of SRAM ports to support it. 
Additionally, we utilized a 64 Byte cacheline size, and 
through the parametrization of the cache, we doubled the 
total size of the iCache relative to the dCache for 
performance reasons (8KB vs 4KB). Additionally, we 
implemented a linebuffer for same-cycle responses and to 
support up to 2 memory operations per cycle. 

​ ​ To test the caches, we used Coremark to see how 
​ different set and way counts performed. We found that 
​ moving from a 4-way to 8-way cache benefited both the 
​ instruction and data cache, giving us a 4% and 1.5% 
​ improvement on runtime respectively. For this reason, 
we chose to double the size of the iCache rather than the 
dCache.  

 

​ (ii) Cache prefetchers 

​ ​ Instruction Cache: We used a simple stride (which 
​ ended up being used as a next-line) prefetcher for the 
​ instruction cache, and triggered it off of a read or write 
​ being halfway through the cache line in the line buffer. 
​ We measured a 0.4% improvement in program delay for 
​ CoreMark on the instruction cache, and no measurable 
​ improvement when tested on the data cache. We attribute 
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this small uplift primarily to the already well-utilized 
memory systems implemented through the current cache 
implementation and the line buffer. 

​ ​ Data Cache: Here, we used a DMP (Dynamic 
Memory-dependent Prefetcher) to look for “pointers”: each 
line ​ fetched from DRAM into the data cache is scanned 
for ​pointers to prefetch. This is accomplished by checking if 
​ any of the words are within a certain window of the PC, 
​ which is fed into the prefetcher from the core. This was 
​ also only using one of the PCs in the superscalar core, 
​ however. Unfortunately, with our implementation, we 
​ were unable to get a measurable performance benefit, 
likely due to the lack of pointer fetching in the target 
programs.  

​ (iii) Superscalar 

​ ​ From the start, we designed our core to be 
superscalar. Though this would mean we were blowing up 
our area usage, we ended up being just below the 300k μm2 
maximum, and reached about 291k. We did not consider 
having more than two ways due to both design 
complications and the penalty for exceeding the area 
limitation.  

​ As for testing, we never tried synthesizing the core as 
one-way, and hence were unable to extract a baseline area 
metric to compare it to. This is because we tested the core as 
one-way simply by sending no-ops into the second way.  

​ On CoreMark-IM, (a math heavy program) we saw an 
IPC of 0.557850 for a 1 way, 2 ALU core and IPC of 0.4680 
for a 2 way, 1 ALU core. This showed us that the benefit of 
going superscalar may not have been as much as we had 
hoped for, though we did see more notable performance 
improvements on benchmarks like aes_sha, which have 
simpler control flow and higher ILP. 

 

 

​ (iv) Load-Store Queue 

The load store queue was one of the more advanced 
modules in the processor, and we chose to add this since we 
knew memory operations would be a likely bottleneck on 
the core. This also played well with the cache optimizations, 
which meant we had a fast memory system to support the 
core. 

Our load-store queue incorporates out-of-order loads with 
respect to stores. First, prior to a load or store entering the 
queue, it identifies dependencies existing inside of the 
current store queue to forward necessary data. For any load 
data that only partially exists inside of the store queue, the 
load identifies the current index of the store in the FIFO to 
ensure that that store completes prior to the load. 
Additionally, the split LSQ forwards stores that have been 
committed but have not been pushed to the cache. 
Compared to our simple, single-port LSQ with in-order 
execution, we obtained a 5.7% increase in performance in 
memory-heavy benchmarks (AES_SHAH) but slight 
performance regressions in other benchmarks (Coremark) 
due to the increased latency of testing memory 
dependencies prior to inserting loads into the FIFO. 

 

 

​ (v) GShare (Branch prediction) 

Our branch prediction was done in the decode stage, and we 
used a Global History register and a Pattern History table 
with the XOR hash, as is commonly used, to generate a 
prediction. We had an 8-entry PHT to reduce area usage, 
and we found that this gave us a 91.6% prediction accuracy 
in the compression benchmark. Compared to the saturating 
counter (two-bit) predictor, this was a 29% accuracy 
improvement. It should also be noted that the tables were 
implemented using standard flip-flops instead of SRAM 
which would have saved on area, but our implementation 
required multi-ported PHT for our dual-commit processor, 
and used combinational reads to perform branch prediction 
in Decode. For this reason, we used a flip flop array. 

 

III.​ ADDITIONAL OBSERVATIONS 
​ As we noted for several of the advanced features, our 
core benefited from memory optimizations throughout 
testing, and proved extremely performant on memory-bound 
programs. The superscalar aspect of the core was not as 
useful in general, but this may also have been bottlenecked 
by ALUs. As soon as we added the second ALU our IPC on 
Coremark increased by 19%, a significant improvement. 
Our core also suffered from high power usage across 
benchmarks, which we later realized was due to not clock 
gating our IPs, including the Cache SRAMs and the 
MULDIV IP.  

IV.​ CONTRIBUTIONS 
 

Feature 
Module Contributions 

Alex Abhi Pratyay 
Fetch 
Queue 

✔ ✔  

Cache ✔   

Prefetchers ✔   

Line Buffer ✔  ✔ 

Decode ✔  ✔ 

Rename   ✔ 

Dispatch ✔   

DRAM 
Mux ✔   

LSQ ✔   

Issue 
Queues ✔   

ROB ✔ ✔  

PRF ✔ ✔  

RRF  ✔ ✔ 

Execute 
FUs   ✔ 

MULDIV 
IP    ✔ 

Rename ✔ ✔ ✔ 

RAT  ✔ ✔ 

Freelist ✔ ✔  
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Feature 
Module Contributions 

Alex Abhi Pratyay 
Branch 
Predictors ✔   

a.​  

V.​ CONCLUSION 
Overall, we successfully accomplished our goal of 

building a high-performance, superscalar RISC-V32IM core 
and performed well above the baseline core across 
benchmarks. Given more time, we would be able to improve 
on the power usage, functional unit/superscalar 
configurations, and perhaps timing. For our autograder runs, 
we hit a maximum frequency of 526 MHz, which was fair 
when compared to other superscalar cores. Our 
best-performing benchmark was the memory-bound 
compression, and worst-performing was, like most groups, 
CNN. Final benchmark results are shown below. 

 

 

Fig. 4.​ IPC across provided and hidden benchmarks. 

 

Fig. 5.​ Delay, microseconds, across benchmarks. 

 

 

 

Fig. 6.​ Power, mW, across benchmarks. 
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